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ABSTRACT: This study presents an invariant description of fixed-wing 

unmanned aerial vehicle (UAV) motion within a vertical plane, yielding closed-form 

expressions for the invariants. Through integration specific to this UAV motion, 

invariants are determined as functions of the flight-path angle. The simulation results 

illustrate that the invariants remain unaffected by changes in heading angle, 

demonstrating consistent values regardless of heading direction. Additionally, the 

results show that an increase in bank angle correlates with a reduced rate of change 

in the invariants concerning flight-path angle. The obtained results offer insights into 

parameter evaluation and the development of invariant-based control and guidance 

methodologies.   

KEYWORDS: Fixed-wing UAV, instantaneous screw motion, invariant 

description of motion. 

 

1. INTRODUCTION  

Dynamic modeling, simplifications in the procedure, and kinematics are 

important factors in controlling a dynamical system. In this paper, the instantaneous 

screw motion (ISM) concept will be discussed along with the fixed-wing unmanned 

aerial vehicle (UAV) dynamics under several assumptions. 
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Unlike the traditional representation of a motion in terms of decoupled translation 

and rotation, Gulio Mozzi proved in 1763 that any general rigid body motion can be 

described by an instantaneous screw axis (ISA) [1,2]. One of the applications of the 

ISM concept in rigid body kinematics is the invariant description of rigid body motion 

that is presented by J. Schutter [3]. J. Angeles described the automatic computation of 

screw parameters of rigid body motion for both finitely and infinitesimally separated 

positions [5,6]. A deep study on screw calculus and its applications in mechanics in 

terms of vector analysis is provided in Ref. [7]. 

Unmanned aerial vehicles are flying vehicles with no human pilot onboard. Over 

the last two decades, they have received considerable attention due to their capability 

of carrying out a number of tasks [8]. Particularly, the demand for highly accurate 

fixed-wing UAVs has increased significantly in the recent years. The idea of utilizing 

the ISM invariants in control and guidance problems was first proposed by D. Azimov 

in 2013, and the advantages and potential uses of this concept in guidance techniques 

have been explained [8].  

This paper is organized and explained in the following steps. First, the equations 

of motion of a fixed-wing UAV dynamic model and their first integrals will be 

provided in Section 2. Second, the expressions for the ISM invariants will be shown 

for a particular case of a fixed-wing UAV motion. In Section 3, special cases of the 

motion will be discussed including the rotational and pure translational motions. Next, 

the simulation results will be shown and the key points will be discussed. The last 

section provides the conclusions from the study. 

 

2. EQUATIONS OF MOTION  

The equations of motion of an aircraft can be defined using two frames: the inertial 

frame and the body frame. The inertial frame is fixed on the ground at sea level and 

denoted as 𝐸𝑥𝑦ℎ. The body frame is denoted 𝐵𝑒1𝑒2𝑒3 and fixed on the aircraft’s center 

of gravity (COG) with the velocity vector pointing in 𝑒1 - direction. 
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Fig. 1. Initial and body frame.  

 

If the sideslip angle is zero (i.e. 𝛽 = 0) and the bank angle is constant (i.e. 𝜙 =

𝜙0), then the atmospheric flight equations can be obtained as [9] 

𝑥̇  =  𝑣 cos 𝛾 cos 𝜓,  

𝑦̇  =  𝑣 cos 𝛾 sin 𝜓,  

ℎ̇  =  𝑣 sin 𝛾 , 

𝑣̇  =  
𝑔0

𝑚
(𝑇 cos 𝛼 − 𝐷) − 𝑔0 sin 𝛾,        (2.1) 

𝛾̇  =  
𝑔0

𝑊𝑣
(𝑇 sin 𝛼 + 𝐿) −

𝑔0

𝑣
cos 𝛾, 

𝜓̇  =  
𝑔0

𝑊𝑣 cos 𝛾
(𝑇 sin 𝛼 + 𝐿) sin 𝜑0, 

where 𝑥, 𝑦, ℎ - coordinates, 𝑣 - velocity magnitude, 𝛾 - flight path angle, 𝜓 - heading 

angle, 𝜙0 - bank angle, 𝛼 - angle of attack, 𝑔0 - magnitude of gravitational 

acceleration, 𝑇 - thrust, L - lift, D - drag, 𝑊 - weight, C - specific fuel consumption. 

The lift and drag are defined to be the components of the resultant aerodynamic force 

perpendicular and parallel to the velocity vector [9]: 

𝐿 =
1

2
𝐶𝐿𝜌𝑆𝑣2,   𝐷 =

1

2
𝐶𝐷𝜌𝑆𝑣2,     (2.2) 

where 𝐶𝐿 , 𝐶𝐷 - lift and drag coefficients, 𝜌 - the density of the atmosphere at the 

altitude of the aircraft, and S is the wing platform area.  
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Assuming that the change of weight is negligible and the following expressions are 

constant over the time during the flight 

𝑔0

𝑊
(𝑇 cos 𝛼 − 𝐷) = 𝑐1,   

𝑔0

𝑊
(𝑇 sin 𝛼 + 𝐿) = 𝑐2,   𝑐1,  𝑐2 − 𝑐𝑜𝑛𝑠𝑡. (2.3)  

Eqs. (2.1) can be rewritten in the following form [10,11] 

𝑥̇  =  𝑣  cos 𝛾 cos 𝜓 ,   

𝑦̇  =  𝑣  cos 𝛾  sin 𝜓 ,   

ℎ̇  =  𝑣 sin 𝛾 ,   

𝑣̇  =  𝑐1 − 𝑔0 sin 𝛾 ,              (2.4) 

𝛾̇  =  
1

𝑣
(𝑐2 cos 𝜑0 − 𝑔0) cos 𝛾 ,   

𝜓̇  =  
𝑐2 sin 𝜑0

𝑣 cos 𝛾
. 

The integrals of Eqs. (2.4) can be obtained in terms of 𝛾, assuming that 𝛾 is an 

independent variable [11]: 

𝑥(𝛾) = ∫
𝑣2(𝜆) sin 𝜆 cos 𝜓 𝑑𝜆

𝑎+𝑏 sin 𝜆

 

 
+ 𝜂1,  

𝑦(𝛾) = ∫
𝑣2(𝜆) sin 𝜆 sin 𝜓 𝑑𝜆

𝑎+𝑏 sin 𝜆

 

 
+ 𝜂2,  

ℎ(𝛾) = 𝑄(𝛾) exp [
4𝐴

𝑑1
arctan

𝑎 tan 𝜆+1

𝑑1
] + 𝜂3,       (2.5) 

𝑣(𝛾) = 𝜂4(𝑎 + 𝑏 sin 𝜆)−1 exp [
2𝐴

𝑑1
arctan

𝑎 tan 𝜆+1

𝑑1
],   

𝜓(𝛾) = tan 𝜑0 ln(tan 𝜆) +
2𝑔0

𝑑1
tan 𝜑0 arctan (

𝑎 tan 𝜆+1

𝑑1
) + 𝜂5,  

where 𝜂1−5, 𝐴 - integration constants, 𝑎 = 𝑐2 cos 𝜙0, 𝑏 = −𝑔0,  𝜆 = 𝛾 +
𝜋

2
, 𝜆̅  =

𝜆

2
, 𝑄(𝑦) - function of 𝛾 [11]. 

For simplicity purposes, the heading angle will be considered constant, i.e the 

motion is in a vertical plane. 
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3. CALCULATIONS OF INVARIANTS  

The motion of a rigid body can be described using six independent instantaneous 

screw motion (ISM) invariants [3]. The expressions for these six invariants are 

obtained in the following form [3]:   

𝑖1 = 𝑓1(𝜔),  𝑖2 = 𝑓2(𝜔,  𝑣), 𝑖3 = 𝑓3(𝜔,  𝜔̇), 𝑖4 = 𝑓4(𝜔,  𝜔̇,  𝑣,  𝑣̇), 𝑖5 = 𝑓5 (𝜔,  𝜔̇,  𝜔̇
̇
),  

𝑖6 = 𝑓6 (𝜔,  𝜔̇,  𝜔̇
̇
,  𝑣,  𝑣̇,  𝑣̇

̇
),         (3.1) 

where 𝜔 and 𝑣 are the angular and translational velocity vectors respectively.  

For the motion of an aircraft in a vertical plane, these vectors are obtained as [10] 

𝜔 =
𝑟̇×𝑟̇

̇

 |𝑟̇|
2 ,  𝑣 = 𝑟̇,        (3.2) 

where 𝑟  - position vector of an aircraft.  

The expressions for invariants can be derived as  

𝑖1 = |𝜔| = (|𝑟̇ × 𝑟̇
̇
|) / (|𝑟̇|

2
),  𝑖2 =  

(𝑣⋅𝜔)

|𝜔|
= 0,  𝑖3 =

|𝜔×𝜔̇|

|𝜔|2
=

|(𝑟̇×𝑟̇
̇
)×(𝑟̇×𝑟̇

̇̇
)|

|𝑟̇|
2

|𝑟̇×𝑟̇
̇
|

,  

𝑖4 = 𝑒𝑦 ⋅ 𝑝̇,  𝑖5 =
|[(𝑟̇×𝑟̇

̇
)×(𝑟̇×𝑟̇

̇̇
)]×[(𝑟̇×𝑟̇

̇
)×(𝑟̇×𝑟̇

̇̇
+𝑟̇× 𝑟̇̇

̇̇
)]|

|𝑟̇|
4

|(𝑟̇×𝑟̇
̇
)×(𝑟̇×𝑟̇

̇̇
)|

,  𝑖6 = 𝑝̇ ⋅ 𝑒𝑥 − 𝑝2̇,   

 (3.3) 

where 

𝑝 =
𝜔×𝑣

|𝜔|2
,  𝑝̇ = [

(𝑟̇×𝑟̇
̇̇
)×𝑟̇+(𝑟̇×𝑟̇

̇
)×𝑟̇

̇

|𝑟̇×𝑟̇
̇
|

−
2|𝑟̇|

4
{(𝑟̇×𝑟̇

̇
)×(𝑟̇×𝑟̇

̇̇
)}⋅{(𝑟̇×𝑟̇

̇
)×𝑟̇}

|𝑟̇×𝑟̇
̇
|
4 ], 𝑒𝑥 =

𝑟̇×𝑟̇
̇

|𝑟̇×𝑟̇
̇
|
,  

𝑒𝑦 =
(𝑟̇×𝑟̇

̇
)×(𝑟̇×𝑟̇

̇̇
)

|(𝑟̇×𝑟̇
̇
)×(𝑟̇×𝑟̇

̇̇
)|

, 𝑒𝑧 =
[𝑟̇×𝑟̇

̇
]×[(𝑟̇×𝑟̇

̇
)×(𝑟̇×𝑟̇

̇̇
)]

|𝑟̇×𝑟̇
̇
|⋅|(𝑟̇×𝑟̇

̇
)×(𝑟̇×𝑟̇

̇̇
)|

, 𝑝2 = −
𝑝⋅𝑒𝑧

𝜔2
, 𝜔2 =

|(𝑟̇×𝑟̇
̇
)×(𝑟̇×𝑟̇

̇̇
)|

|𝑟̇×𝑟̇
̇
|
2 . 

From Eqs. (2.4), the derivatives of the position vector can be written in the following 

form: 

𝑟̇ = [
𝑣 cos 𝛾 cos 𝜓0

𝑣 cos 𝛾 sin 𝜓0

𝑣 sin 𝛾
],          (3.4) 
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𝑟̇̇ = [

𝑣̇ cos 𝛾 cos 𝜓0 − 𝑣𝛾̇ sin 𝛾 cos 𝜓0

𝑣̇ cos 𝛾 sin 𝜓0 − 𝑣𝛾̇ sin 𝛾 sin 𝜓0

𝑣̇ sin 𝛾 + 𝑣 𝛾̇ cos 𝛾
] = [

(𝑐1 cos 𝛾 − 𝑐2 cos 𝜙0 sin 𝛾) cos 𝜓0

(𝑐1 cos 𝛾 − 𝑐2 cos 𝜙0 sin 𝛾) sin 𝜓0

𝑐1 sin 𝛾 + 𝑐2 cos 𝜙0 cos 𝛾 − 𝑔0

]. 

 (3.5) 

Substitution of Eqs.(3.4, 3.5) into Eqs. (3.2) allows us to get the invariants as the 

functions of 𝛾 (flight-path angle) and 𝛼 (angle of attack).  

 

4. SPECIAL CASES  

In this section, some special cases of aircraft’s motion will be studied. The 

assumptions made above are considered to be invalid for this section. The roll, pitch, 

and yaw angles are denoted by 𝜙, 𝜃, and 𝜓 respectively.  

 

 

Fig. 2. Roll, Pitch and Yaw angles [14]  

 

4.1. Rotational motion 

4.1.1. Roll maneuver: 𝜙̇ ≠ 0,  𝜃̇ = 0,  𝜓̇ = 0 

Consider the motion that the aircraft performs a roll maneuver. In this case, the first 

and the second invariants can be written in terms of bank and sideslip angles. The 

other four invariants would be zero: 

𝑖1 = |𝜔| = 𝜙̇,   𝑖2 = |𝑟̇| = 𝑣 = 𝜂4(𝑎 + 𝑏 sin 𝜆)−1 exp [
2𝐴

𝑑1
arctan

𝑎 tan 𝜆+𝑏

𝑑1
],  

𝑖3 = 𝑖4 = 𝑖5 = 𝑖6 = 0.          (4.1) 

4.1.2. Pitch maneuver: 𝜙̇ = 0,  𝜃̇ ≠ 0,  𝜓̇ = 0   

In this case, the aircraft performs a pitch maneuver, and the invariants will take the 

following form: 
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𝑖1 = 𝜃̇ |cos 𝜙0 − sin 𝜙0|,  𝑖2 = 𝑦̇,   𝑖3 = 𝑖4 = 𝑖5 = 𝑖6 = 0,    

 (4.2) 

where 𝜙0 is a constant bank angle. 

4.1.3. Yaw maneuver: 𝜙̇ = 0,  𝜃̇ = 0,  𝜓̇ ≠ 0   

For this case of aircraft’s motion, the rotational and the translational velocity vectors 

can be written as [13] 

𝜔 = [0 0 (cos 𝜃0 cos 𝜙0 + cos 𝜃0 sin 𝜙0 − sin 𝜃0)]𝑇 ,    𝑣 = [𝑥̇ 𝑦̇ 𝑧̇]𝑇 ,  

 (4.3) 

where 𝜃0 is a constant pitch angle.  

The invariants will be as follows 

𝑖1 = 𝜓̇ |cos 𝜃0 cos 𝜙0 + cos 𝜃0 sin 𝜙0 − sin 𝜃0|,  𝑖2 = 𝑧̇,  𝑖3 = 𝑖4 = 𝑖5 = 𝑖6 = 0.

 (4.4) 

 

4.2. Translational motion 

When the aircraft has only the translational velocity, the screw axis would be in the 

direction of this velocity vector, and the only nonzero invariant would be the invariant 

2. Depending on the choice of the 𝑒𝑥 unit vector, it could be either positive or negative: 

𝑖1 = 0,  𝑖2 = 𝑣 = 𝜂4(𝑎 + 𝑏 sin 𝜆)−1 exp [
2𝐴

𝑑1
arctan

𝑎 tan 𝜆+𝑏

𝑑1
],  𝑖3 = 𝑖4 = 𝑖5 = 𝑖6 = 0.  

(4.5) 

 

5. SIMULATIONS  

5.1.  Simulation setup  

Since the weight change is considered negligible, 𝑐1 and 𝑐2 constants in Eq. (2.3) 

represent the accelerations along the wind axis and the lift axis respectively. 

In most cases, the lift acceleration is greater than the gravitational acceleration, 

meaning that (𝑐2 cos 𝜙0)2 > 𝑔0
2. Without loss of generality, the following values for 

the constants can be chosen to simulate the obtained results [9]: 

𝑚 = 40𝑘𝑔,  𝑔0 = 9.81𝑚/ sec2 ,  𝑆 = 21.55,  𝐾 = 0.073,  𝐶𝑑0 = 0.0223, 
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𝐴𝑟 = 5.1,  𝛼0𝐿 = 0.1,  𝛼𝑇 = 0.1,  𝑐1 = 1,  𝑐2 = 10,  𝜓0 = 𝜋/4,  𝜙0 = 0. 

Matlab was used to create the diagrams.  

5.2.  Graphical relationship between parameters  

An implicit, or possibly, explicit relationships between the parameters are of great 

interest. The profiles of the ISM invariants with respect to flight-path angle and angle 

of attack are shown in Figure 3. In addition, the invariants are tested by changing the 

constant bank angle. The invariants have also been tested by changing the heading 

angle and the bank angle. It turned out that the invariants don’t depend on the 

heading angle if it is constant, i.e., the motion is on a vertical plane. Furthermore, it is 

seen that the rate of invariants with regard to the flight path angle reduces as the bank 

angle increases. Figure 3 represents the invariants with respect to the angle of attack 

and flight path angle considering the bank and heading angles constant. It can be seen 

that the first invariant (𝑖1) is proportional to the angle of attack, and increases 

parabolically as the flight-path angle increases. The second invariant is zero for any 

values of 𝛾 and 𝛼 under the assumptions considered. The third invariant fluctuates in 

a small interval (nearly zero), and the interval becomes wider as 𝛾 increases. The 4th 

invariant fluctuates in the interval [-1000,1000], and the interval shrinks as 𝛾 

increases. The fifth invariant changes between 0 and 1.5, and it is hard to evaluate the 

change of interval. The invariant 6 changes dramatically with random fluctuations, 

making it hard to evaluate its behavior.  

 

6. CONCLUSIONS   

The invariant description of a fixed-wing UAV motion in a vertical plane has been 

presented and the closed-form expressions for the invariants have been derived. Using 

the integrals obtained for this particular motion of a fixed-wing UAV, the invariants 

are found as the functions of the flight-path angle. An implicit relationship between the 

invariants and the parameters of flight dynamics (including the control parameters) has 

been established. The simulation results show that the invariants are independent of the 

heading angle which means that for any constant heading angle, the invariants are 

found to be the same. It is also shown that the increase in the bank angle decreases the 
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rate of the invariants with respect to the flight-path angle. The results can be used to 

evaluate the parameters in control and guidance problems and develop invariant-based 

control and guidance systems.  
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(e)      (f) 

 

Fig. 3. Invariants vs Angle of attack and Flight path angle 
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